Finding the Best Function: A Way to Explain Calculus of Variations to Engineering and Science Students
نویسندگان
چکیده
In many practical problems, we need to find the most appropriate function: e.g., we need to find a control strategy u(t) that leads to the best performance of a system, we need to find the shape of the car which leads to the smallest energy losses, etc. Optimization over an unknown function can be described by the known Euler-Lagrange equations. The traditional way of deriving Euler-Lagrange equations when explaining them to the engineering and science students is, however, somewhat over-complicated. We provide a new, simpler way to deriving these equations, a way in which we directly use the fact that when the optimum is attained, all partial derivatives are equal to 0. 1 Finding the Best Function: Euler-Lagrange Equations and How They Are Derived Now Optimization is ubiquitous. In practice, we often need to make choices. For example, in engineering, when we design an object (a car, a computer) or select a control (e.g., a route for the car or for a computer message), we need to select the values of several parameters describing the object or control. Often, we can express our preferences by assigning, to each possible alternative, a numerical value describing the degree to which we are satisfied with this alternative. For example, when we design a high-performance computer, this satisfaction-describing numerical value is the throughput – the number of operations per second that this computer can perform. In such situations, we need to select the values of the corresponding parameters x1, . . . , xn for which the corresponding numerical value F (x1, . . . , xn) is the largest possible.
منابع مشابه
Power Allocation Strategies in Block-Fading Two-Way Relay Networks
This paper aims at investigating the superiority of power allocation strategies, based on calculus of variations in a point-to-point two-way relay-assisted channel incorporating the amplify and forward strategy. Single and multilayer coding strategies for two cases of having and not having the channel state information (CSI) at the transmitters are studied, respectively. Using the notion of cal...
متن کاملSOME FUNDAMENTAL RESULTS ON FUZZY CALCULUS
In this paper, we study fuzzy calculus in two main branches differential and integral. Some rules for finding limit and $gH$-derivative of $gH$-difference, constant multiple of two fuzzy-valued functions are obtained and we also present fuzzy chain rule for calculating $gH$-derivative of a composite function. Two techniques namely, Leibniz's rule and integration by parts are introduced for ...
متن کاملNON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS
A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...
متن کاملAn analytic study on the Euler-Lagrange equation arising in calculus of variations
The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...
متن کاملHartley Series Direct Method for Variational Problems
The computational method based on using the operational matrix of anorthogonal function for solving variational problems is computeroriented. In this approach, a truncated Hartley series together withthe operational matrix of integration and integration of the crossproduct of two cas vectors are used for finding the solution ofvariational problems. Two illustrative...
متن کامل